Aquaporin-4–dependent K+ and water transport modeled in brain extracellular space following neuroexcitation

نویسندگان

  • Byung-Ju Jin
  • Hua Zhang
  • Devin K. Binder
  • A.S. Verkman
چکیده

Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumours: immunohistochemical case review.

Specimens of normal human brain, contused brain, brain with bacterial meningitis, and brain tumours were immunolabelled for aquaporin 4 (AQP4) and Kir4.1. In normal brain tissue, AQP4 and Kir4.1 were detected around the microvessels. In pathological brain tissue, AQP4 was upregulated in astrocytes in oedematous regions and Kir4.1 was upregulated in astrocytes in damaged brain. Changes in alpha ...

متن کامل

Dynamic regulation of aquaporin-4 water channels in neurological disorders

Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain inju...

متن کامل

Greatly improved survival and neuroprotection in aquaporin-4-knockout mice following global cerebral ischemia.

Aquaporin-4 (AQP4), the principal water channel in astrocytes, is involved in brain water movement, inflammation, and neuroexcitation. In this study, there was strong neuroprotection in mice lacking AQP4 in a model of global cerebral ischemia produced by transient, bilateral carotid artery occlusion (BCAO). Survival and neurological outcome were greatly improved in the AQP4(-/-) vs. AQP4(+/+) m...

متن کامل

Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma

Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the g...

متن کامل

Time-dependent Diffusion Mri in the Neocortex of Aquaporin-4 Deficient and Normal Mice in the Resting State at 7t

The goal of this work is to investigate whether and how non-invasive MRI methods can contribute to studying the role of Aquaporin-4 in water transport in the brain. Aquaporin 4 (AQP-4) is the predominant water channel protein in the neocortex and cerebellum. It is concentrated in the astrocyte end-feet membranes, adjacent to blood vessels to facilitate fast, selective and activity dependent wat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2013